On Warnaar's elliptic matrix inversion and Karlsson–Minton-type elliptic hypergeometric series
نویسندگان
چکیده
منابع مشابه
On Warnaar’s Elliptic Matrix Inversion and Karlsson–minton-type Elliptic Hypergeometric Series
Using Krattenthaler’s operator method, we give a new proof of Warnaar’s recent elliptic extension of Krattenthaler’s matrix inversion. Further, using a theta function identity closely related to Warnaar’s inversion, we derive summation and transformation formulas for elliptic hypergeometric series of Karlsson–Minton-type. A special case yields a particular summation that was used by Warnaar to ...
متن کاملGustafson–Rakha-Type Elliptic Hypergeometric Series
We prove a multivariable elliptic extension of Jackson’s summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey transformations. The latter four results are all new even in the trigonometric case.
متن کاملElliptic Hypergeometric Series on Root Systems
We derive a number of summation and transformation formulas for elliptic hypergeometric series on the root systems An, Cn and Dn. In the special cases of classical and q-series, our approach leads to new elementary proofs of the corresponding identities.
متن کاملHypergeometric Series and Periods of Elliptic Curves
In [7], Greene introduced the notion of general hypergeometric series over finite fields or Gaussian hypergeometric series, which are analogous to classical hypergeometric series. The motivation for his work was to develop the area of character sums and their evaluations through parallels with the theory of hypergeometric functions. The basis for this parallel was the analogy between Gauss sums...
متن کاملElliptic Hypergeometric Solutions to Elliptic Difference Equations⋆
It is shown how to define difference equations on particular lattices {xn}, n ∈ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2005
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.02.028