On Warnaar's elliptic matrix inversion and Karlsson–Minton-type elliptic hypergeometric series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Warnaar’s Elliptic Matrix Inversion and Karlsson–minton-type Elliptic Hypergeometric Series

Using Krattenthaler’s operator method, we give a new proof of Warnaar’s recent elliptic extension of Krattenthaler’s matrix inversion. Further, using a theta function identity closely related to Warnaar’s inversion, we derive summation and transformation formulas for elliptic hypergeometric series of Karlsson–Minton-type. A special case yields a particular summation that was used by Warnaar to ...

متن کامل

Gustafson–Rakha-Type Elliptic Hypergeometric Series

We prove a multivariable elliptic extension of Jackson’s summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey transformations. The latter four results are all new even in the trigonometric case.

متن کامل

Elliptic Hypergeometric Series on Root Systems

We derive a number of summation and transformation formulas for elliptic hypergeometric series on the root systems An, Cn and Dn. In the special cases of classical and q-series, our approach leads to new elementary proofs of the corresponding identities.

متن کامل

Hypergeometric Series and Periods of Elliptic Curves

In [7], Greene introduced the notion of general hypergeometric series over finite fields or Gaussian hypergeometric series, which are analogous to classical hypergeometric series. The motivation for his work was to develop the area of character sums and their evaluations through parallels with the theory of hypergeometric functions. The basis for this parallel was the analogy between Gauss sums...

متن کامل

Elliptic Hypergeometric Solutions to Elliptic Difference Equations⋆

It is shown how to define difference equations on particular lattices {xn}, n ∈ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2005

ISSN: 0377-0427

DOI: 10.1016/j.cam.2004.02.028